

Welcome to QuickTimer’s documentation!

QuickTimer is an easy to use python package to handle time measurements in code.

Contents:

	Introduction
	Motivation

	QuickTimer package
	Module contents

	Example
	Installation

	Usage

Index

	Index

Introduction

QuickTimer is an easy to use python package to handle time measurements in code.

The aim here was to define a single object which would allow users to easily track passed time throughout their code, as well as to present the tracking results in a fancy way.

Motivation

As someone who runs a lot of data transformation code and needs to keep an eye on performance during specific steps, I was annoyed by how much time I had to invest again and again to track my code’s progress and performance in an orderly fashion.

Existing packages don’t offer the ease-of-use I expected from such products or formatted the output horribly, hence this package was born.

QuickTimer package

Module contents

	
class quicktimer.Timer(time_unit='timedelta', decimals_percentage=2, decimals_time=4, output_func=<built-in function print>)

	Bases: object

	
delete_timestamps()

	Deletes any stored timestamps including descriptions.

	
fancy_print(delete=True)

	Fancy prints the entire time taken, the differences between the individual timestamps in absolute seconds & in percentages as well as the descriptions.

	Parameters

	delete (bool, optional) – deletes the currently stored list of timestamps after ouput, defaults to True

	
get_descriptions()

	Returns the stored descriptions.

If no description was supplied when take_time was called, the value is an empty String.

	Returns

	List of stored descriptions.

	Return type

	List<str>

	
get_timestamps()

	Returns the timestamps including the descriptions as a List of Tuples.

	Returns

	A list of timestamps and discriptions.

	Return type

	List<(datetime, str)>

	
set_output_func(output_func)

	Sets the output function of the module.

	Parameters

	output_func (function, optional) – a function to output messages (e.g. logger.info or print)

	
set_time_unit(time_unit)

	Set the unit in which the time is being displayed.

	Acceptable values:
	
	“timedelta”

	“seconds”

	“milliseconds”

	Parameters

	time_unit (str, optional) – Unit in which time measurements are displayed

	Raises

	ValueError – when an unacceptable time_unit is passed as parameter.

	
take_time(description='', printme=False)

	Snapshots the current time and inserts it into the List as a Tuple with the passed description.

	Parameters

	
	description (str) – Gets saved alongside the timestamp. Use it as a descriptor of what happened before the function was called, defaults to empty String

	printme (bool) – Enable printing the description after taking a snapshot of the time. Use this parameter to keep track of the code progress during runtime, defaults to False

Example

Installation

The package is available on PyPi [https://pypi.org/project/quicktimer/] :

pip install quicktimer

Usage

Instantiate the Timer class and insert one-liners with take_time() between your existing code to take timestamps.

Call the fancy_print() function to print a nicely formatted overview of how much time has passed overall,
how much time has passed between the take_time calls, including percentage per step and passed step-descriptions.

Although both functions (take_time() & fancy_print()) can be used
without any parameters, you should pass at least a description to take_time("Finished x!") to add some context to your measurements.

You can either make use of the default output method (print to the console) or you can pass a custom function: for instance to pass the messages to a logger.

Using the default output method

When no output_func parameter is passed during instantiation, it defaults to print the messages to the console as follows:

import time
from quicktimer import Timer

T = Timer()

take the starting time
T.take_time(description="The description of the first function-call is not displayed!")

time.sleep(1.1) # code substitute: parsing the data
T.take_time("Parsed the data")

time.sleep(0.02) # code substitute
T.take_time()

time.sleep(0.1) # code substitute: Storing the data
T.take_time("Stored the data", True)

T.fancy_print()

Output of the code in the console:

> Stored the data
> ------ Time measurements ------
> Overall: 0:00:01.254049
> Step 0: 0:00:01.113962 - 88.83 % - Description: Parsed the data
> Step 1: 0:00:00.030001 - 2.39 % - Description:
> Step 2: 0:00:00.110086 - 8.78 % - Description: Stored the data

The time can be displayed as timedelta (default), seconds or milliseconds.
The number of decimal places for seconds or milliseconds can be set with the parameter decimals_time which defaults to 4.
The number of decimal places for the percentages can be set with the parameter decimals_percentage which defaults to 2.

When initialized with T = Timer(time_unit="seconds", decimals_time=2, decimals_percentage=1) the output would be the following.

> Stored the data
> ------ Time measurements ------
> Overall: 1.24 seconds
> Step 0: 1.10 seconds - 88.8 % - Description: Parsed the data
> Step 1: 0.03 seconds - 2.5 % - Description:
> Step 2: 0.11 seconds - 8.8 % - Description: Stored the data

Using a logger as output method

Instead of printing to the console, you can also pass your own function to the module.
This can be used with an easily configured logger to write the messages to your log.

import time
import logging
from quicktimer import Timer

setting up a logger
my_format = "%(asctime)s [%(levelname)-5.5s] %(message)s"
logging.basicConfig(filename='test.log', level=logging.INFO, format=my_format)
logger = logging.getLogger()

logger.info will be used as the output function instead of print
T = Timer(output_func=logger.info)

T.take_time() # take the starting time
time.sleep(0.5) # code substitute: parsing the data
T.take_time("Parsed the data")
time.sleep(0.1) # code substitute: Storing the data
T.take_time("Stored the data", True)

T.fancy_print()

The contents of your log-file would look like this:

2021-06-24 13:35:43,275 [INFO] Stored the data
2021-06-24 13:35:43,275 [INFO] ------ Time measurements ------
2021-06-24 13:35:43,275 [INFO] Overall: 0:00:00.624691
2021-06-24 13:35:43,275 [INFO] Step 0: 0:00:00.512639 - 82.06 % - Description: Parsed the data
2021-06-24 13:35:43,275 [INFO] Step 1: 0:00:00.112052 - 17.94 % - Description: Stored the data

 Python Module Index

 q

 		 	

 		
 q	

 	
 	
 quicktimer	

Index

 D
 | F
 | G
 | M
 | Q
 | S
 | T

D

 	
 	delete_timestamps() (quicktimer.Timer method)

F

 	
 	fancy_print() (quicktimer.Timer method)

G

 	
 	get_descriptions() (quicktimer.Timer method)

 	
 	get_timestamps() (quicktimer.Timer method)

M

 	
 	
 module

 	quicktimer

Q

 	
 	
 quicktimer

 	module

S

 	
 	set_output_func() (quicktimer.Timer method)

 	
 	set_time_unit() (quicktimer.Timer method)

T

 	
 	take_time() (quicktimer.Timer method)

 	
 	Timer (class in quicktimer)

 nav.xhtml

 Table of Contents

 		
 Welcome to QuickTimer’s documentation!

 		
 Introduction

 		
 Motivation

 		
 QuickTimer package

 		
 Module contents

 		
 Example

 		
 Installation

 		
 Usage

 		
 Using the default output method

 		
 Using a logger as output method

_static/plus.png

_static/file.png

_static/minus.png

